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ABSTRACT

Ultraviolet (UV) radiation poses a significant threat to cyanobacteria by inducing cellular damage through photo-oxidation, resulting in
the formation of harmful photosensitized proteins and pigments. To thrive in such harsh conditions, certain cyanobacteria have evolved
to produce compounds like indole-alkaloid sunscreen and scytonemin within their extracellular sheaths. These compounds offer
photoprotection and mitigate oxidative stress. Scytonemin, characterized by its hydrophobic nature and stability, acts as an antioxidant
with considerable biotechnological aspects. The presence of a primitive array of ultraviolet-absorbing pigments in phylogenetically
ancient cyanobacteria indicates an evolutionary adaptation to UV radiation. Scytonemin synthesis involves biosynthetic precursors
tyrosine and tryptophan. Within a cluster of 18 genes (NpR1276 to NpR1259), genes NpR1274 to NpR1271 are pivotal in scytonemin
biosynthesis. Understanding scytonemin biosynthesis at the molecular level holds promise for its application in biotechnology. This
review aims to summarize scytonemin biosynthetic gene clusters, their transcriptional regulations, evolutionary significance, and
biotechnological properties. By advancing our understanding, it seeks to facilitate the screening of appropriate cyanobacteria for the
scytonemin synthesis for various applications.
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Introduction

Cyanobacteria, the earliest Gram-negative prokaryotes,
emerged during the Precambrian era and have pivotal role in
oxygen evolution, fostering the development of diverse life
forms [1]. However, contemporary challenges such as
anthropogenic atmospheric pollutants and ozone depletion
have intensified UV radiation reaching Earth's surface, posing
significant threats to cyanobacteria. To counteract these
challenges, cyanobacteria produce photo-protective
compounds, including scytonemin [2-3]. Scytonemin is
synthesized within the extracellular polysaccharide sheath of
approximately 300 cyanobacterial species was first identified
by Nageli in certain terrestrial cyanobacteria [4]. This matrix
comprises heteroglycans, peptides, proteins, DNA, and various
secondary metabolites. Dark yellow to brown coloration of the
sheath is due to the deposition of this lipid-soluble yellow-
brown pigment (Figure 1) [5].

Its protective role againstharmful UVirradiation and facilitating
adaptation to challenging environments is demonstrated by the
experiments conducted in Nostoc flagelliforme, found in the
upper layers of microbial mat communities exposed to high
solar irradiance [6]. It is approximately 5 % of the cellular dry
weight of the culture [7]. Extraction methods involve the use of
100 % acetone, with subsequent re-cultivation of Lyngbya sp.
allowing for extraction after three weeks [8-12].

Research suggests that scytonemin synthesis is influenced by
various environmental factors, including hydration periods,

nitrogen availability, salt stress, UV radiation (particularly UV-
B), high light intensity, and temperature [13-15]. For instance,
longer hydration periods between desiccation cycles in Nostoc
punctiforme promote higher scytonemin synthesis. Conversely,
periodic desiccation inhibits scytonemin synthesis in
Chroococcidiopsis, with nitrogen restriction leading to increased
production [16-19]. While the exact mechanism of scytonemin
induction remains unclear, it is evident that multiple
environmental signals modulate its levels in different
cyanobacterial species. Scytonemin serves as a crucial defense
mechanism for cyanobacteria against environmental stressors,
highlighting its importance in microbial adaptation and survival
strategies [20-22].

Figure 1: Photograph of Lyngbya sp.

showing scytonemin in its sheath.
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MALDI-TOF MS analysis, demonstrated that scytonemin
composed of indolic and phenolic subunits, possesses a
molecular mass of 544 Da and its molecular formula is
C,,H,,N,0, [23-25]. This analysis revealed characteristics
identical to the oxidized state of scytonemin. Its [IUPAC name is
(3E,3'E)-3,3"'-Bis(4-hydroxybenzylidene)-1,1"-
bicyclopenta[b]indole-2,2'(3H,3'H)-dione [26-27]. The linkage
between the subunits of scytonemin occurs atan olefinic carbon
atom, which is a exclusive feature among natural compounds
[28-34], defining a novel ring system termed 'the scytonemin
skeleton' [35-36].

It exists in both oxidized (fuscochlorin, green) and reduced
(fuscorhodin, red) forms. Additionally, Scytonema sp. has
yielded derivatives such as dimethoxyscytonemin,
tetramethoxyscytonemin, and scytonin (Figure 2). Purified
scytonemin exhibits peak absorption at 380 nm and is
identifiable in cyanobacteria via MALDI-TOF MS, with its
absorption spectrum covering the UVC-UVB-UVA-violet-blue
spectral range [37]. Analysis of scytonemin commonly employs
UV-absorbance, HPLC, and Raman spectroscopy techniques,
facilitating precise characterization and quantification in
various biological contexts and enhancing our understanding of
itsroles and attributes within cyanobacteria [38-39].

Dimethoxyscytonemin

Tetramethoxyscytonemin

Scytonin

Figure 2: Chemical structure of scytonemin and their
derivatives.

Scytonemin serves as a protective shield for cyanobacteria
against UV radiation, essentially acting as a sunscreen [25]. This
protective function extends to cyanobacterial lichens like
Collema, Gonohymenia, Petulla, etc., shielding them from high
radiation levels [32]. Its role as a UV shield was studied in the
terrestrial cyanobacterium Chlorogloeopsis sp. [33]. Nostoc
punctiforme cells, remained intact even after 2 months of
constant exposure to UV-A radiation, demonstrated the
remarkable stability of this metabolite [16]. In Lyngbya sp.
CU2555, with minimal impact on its absorption properties, it
exhibits environmental stability against various stress [34].
Some scientists have reported the preservation of scytonemin in
sedimentary lakes [35], while others have noted its abundant
preservation in deep sea sediments, indicating its resilience and
resistance to degradation during erosion and transport [36].
Consequently, scytonemin stands as a significant biomarker in
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paleoclimatological reconstructions and terrestrial extreme
environments [37-39].

Scytonemin biogenesis and its transcriptional regulation
Scytonemin, a heterocyclic indole-alkaloid compound is
synthesized from tryptophan and tyrosine derivatives, both of
which absorb UV-B radiation. The genes for scytonemin
biosynthesis are present as a single operon, comprising Scy
genes (core genes), Ebo genes (responsible for transporting an
intermediate productinto the periplasm for final assembly), and
additional genes involved in precursor synthesis from
tryptophan. Within the N. punctiforme genome, NpR1276 to
NpR1259 genes, have been identified which are associated with
scytonemin biosynthesis. Six conserved genes within this
cluster, NpR1276 to NpR1271 (ScyA to ScyF), have a substantial
role in scytonemin biosynthesis. The process occurs in three
modules: Module [ (ScyABCDEF) catalyzes the formation and
oxidation of the scytonemin monomer, while Module II
(NpR1270-NpR1259) translocates the monomer to the
periplasm. Module III (EboABCEF) facilitates this translocation
process (Figure 3).

ScyA (NpR1276) initiates synthesis by coding for acetolactate
synthase, which condenses pyruvate molecules. Oxidative
deamination of L-tryptophan, yielding indole-3 pyruvic acid is
catalysed by ScyB (NpR1275). Subsequent steps involve
cyclization, decarboxylation, and monomer dimerization to
form scytonemin (Figure 4). While ScyD and ScyF may not be
essential, they likely contribute to scytonemin synthesis.
Moreover, NpR1270 (TryP), a copper monooxygenase, is crucial
for tyrosine oxidation, a pivotal step in scytonemin biosynthesis.
Additionally, genes NpF5232 to NpF5236 are associated with
scytonemin biogenesis and are upregulated under UV-A
radiation.

Transcriptional studies in N. punctiforme reveal that UV-A
radiation upregulate scytonemin biosynthesis genes leading to
the synthesis of tryptophan and p-hydroxyphenylpyruvate
monomers, which undergo processing in the cytoplasm before
being transported to the periplasm for further enzymatic
reactions, resulting in the formation of the scytonemin (reduced
form). Once secreted into the extracellular matrix, scytonemin
blocks incoming UV-A radiation, thereby regulating gene
expression and halting further scytonemin synthesis. It is
suggested thatatype IV secretion system is involved in secreting
scytonemin to the extracellular matrix. These mechanisms
underscore the intricate regulation of scytonemin biosynthesis
and its pivotal role in protecting cyanobacteria from UV
radiation.
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Figure 3: Genes for scytonemin biosynthesis, periplasmic
export, and regulation in cyanobacteria.

Two-component regulatory system (TCRS), composed of a
sensor kinase (histidine kinase) (NpRF1277) and a response
regulator (NpRF1278), which is highly conserved lies adjacent
to the scytonemin biosynthetic gene cluster (Figure 3). Study
demonstrated that a mutant lacking NpRF1278 failed to
produce scytonemin under UV-A stress compared to the wild

type [55]. NpRF1277 is an HKII-type histidine kinase containing
the structural domains of HKII + (PAS)2 PAS/PAC. PAS/PAC
domains can bind small molecules, thereby signaling responses
to stimuli such as light, oxygen, pH, and salinity. The response
regulator NpRF1278 is an RRII featuring an AraC output DNA-
binding domain [56]. The expression response of TCRS to light
and UV radiation differs from that of cells exposed to oxidative
stress, indicating its photosensitivity [57].
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Figure 4: Scytonemin biosynthesis pathway.

Role of scytonemin in evolution

During the early Proterozoic era, cyanobacterial photosynthesis
markedly increased oxygen levels, while UV radiation remained
abundant on Earth's surface. There likely existed mechanisms to
balance UV radiation and photosynthetically active radiation
(PAR), crucial for life's evolution during that period (Figure 5).
Early photosynthetic life depended on protective organic
molecules in aquatic habitats [58]. UV-screening compounds,
evolving during the Precambrian era, provided UV protection,
potentially enhancing cyanobacteria's resilience to high
radiation [29]. While the chemistry of the first specific UV-
absorbing molecules on Archean Earth remains poorly
understood, aromatic-containing reaction centres probably
served as some of the earliest UV screens, enabling
cyanobacteria to harvest light for photosynthesis [59]. The
presence of ancient UV-absorbing pigments in modern
cyanobacteria, ranging from UVC-absorbing pigments in the
Archean eon to pigments absorbing longer UV wavelengths in
the Phanerozoic eon, suggests the evolutionary selection of
photon dissipation mechanisms for photo-protection
throughoutlife's history [24].

Considerable amounts of scytonemin have been observed in the
top deposits of the terrestrial cyanobacterial mats or crusts,
offering shield to cells beneath by dissipating UV radiation [19,
60]. The presence of scytonemin in Precambrian era mats with
silica, likely provided similar protection in extreme photic
environments. Scytonemin's long-term stability [33] is
advantageous for understanding life's evolutionary history in
paleobotanical studies. It holds substantial role in ecological
management, as it often accrues in the upper layers of
cyanobacterial mats thriving in intensely sunlight-exposed
regions. Scytonemin's evolutionary functions include UV
absorption, antioxidant properties, reduced ROS production
and thymine dimers, heat dissipation from absorbed UV
radiation, and increased soil surface temperature [4, 34, 61, 62].
This contributes to cyanobacteria's high tolerance to
desiccation [16] and stabilization of the exopolysaccharide
matrix [63]. Scytonemin interacts with the WspA protein (in
matrix), enables desiccation resistance in cyanobacteria [64]. It
also forms iron-complexes that enable the cyanobacterial
survival onrocks [65, 66].
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Figure 5: Stratagems by cyanobacteria to counteract high
radiations.

Biotechnological potential of scytonemin

Cyanobacteria offer a promising avenue for biogenesis of fuels,
chemicals, medicines, plant secondary metabolites etc. [67-71].
They serve as a valuable source of biofuels [72]. Ultraviolet (UV)
radiation poses risks such as sunburn, premature skin aging,
and skin cancer, including malignant melanoma, due to repeated
exposure to sunlight's high radiations [73]. To counteract the
detrimental effects of high radiations, cyanobacteria synthesize
scytonemin, that acts as a natural substitute to synthetic UV
filters to safeguard them [74]. Scytonemin's photoprotective
and antioxidant properties give it commercial value in
cosmetics and medicine [75]. Moisturizing chemicals have side
effects like contact sensitivity and estrogenicity on human skin,
with harm to aquatic environments also, cyanobacteria offer
superior substitutes to commercially manufactured
antioxidants used in pharmaceutical and food industries,
providing carotenoids, phycobiliproteins, phenolics,
glutathione, scytonemin, MAAs, and vitamins like ascorbate and
tocopherol [76].

Scytonemin stands out amongst natural products due to its
cellular location, strong UV-A and violet-blue absorption, and
high Sun Protection Factor (SPF) value. Extracellular substances
with high-water retention capacity, can serve as moisturizers in
cosmetic products. The demand for natural ingredients in
cosmetics isrising, as syntheticinorganic UV filters like titanium
dioxide (TiO,) and zinc oxide (ZnO) in sunscreen products
produce highly oxidizing radicals [77]. Scytonemin, as a natural
sunscreen compound, garners interest from dermatologists and
cosmetic industries for skin protection [78, 79]. Producing
scytonemin sunscreen synthesized by Lyngbya notarisii would
be cost-effective [80]. Scytonemin from Antarctic
cyanobacterium Nostoc commune exhibits a high SPF value and
scavenges free radicals, suggesting its potential as a natural UV
sunscreen creamingredient[81].

Beyond its UV-A shielding, scytonemin finds biomedical
applications due to its anti-proliferative and anti-inflammatory
activities without chemical toxicity [82-83]. Studies with Nostoc
commune demonstrate scytonemin's antioxidant and radical
scavenging activity, potentially preventing UV-induced cellular
damage [23, 84, 85]. While scytonemin's antioxidant activity
varies across strains like Lyngbya sp. CU2555, it still shows
radical scavenging ability [34]. Scytonemin synthesized by
Leptolyngbya mycodia acts as a potent antioxidant, reducing
DPPH radicals [20]. Its role in scavenging reactive oxygen
species and controlling cancer cell growth is noteworthy [86].
Scytonemin inhibits skin inflammation by down-regulating

NF-xB activity [87], regulates human fibroblasts and
endothelial cells proliferation [83, 84], and inhibits human polo-
like kinase 1 (target for anticancer drugs) [88, 89]. It can
suppress human T-lymphoid Jurkat cell growth [90], and
LPS/IFNc-stimulated NO production in murine macrophage
RAW264 cells [91]. Scytonemin can also restraint the activity of
other kinases like Myt1, cyclin B, checkpoint kinasel, and
protein kinase C [92], making it a promising small-molecule
drug. Leptolyngbya holds significant commercial potential in
scytonemin synthesis and ecological biotechnology [93].
Various medicinal and agriculturally important bioactive
secondary compounds from cyanobacteria have been identified
[94], indicating their potential to produce natural substances
sustainably.

Conclusions

Scytonemin, a secondary metabolite produced by
cyanobacteria, holds significant market potential due to its
varied roles as a UV protectant and antioxidant relevant to
anhydrobiosis. Its stability against various stresses and its
photo-protective abilities suggest its potential application as a
sunscreen. Scytonema sp. stands as a promising candidate for
bioremediation of saline soils while producing valuable
metabolites like scytonemin [95]. However, comprehensive
studies on the physiological, biochemical, and molecular
aspects, as well as the presence of effective UV-
screening/absorbing compounds in these organisms, are still
lacking. Therefore, further research is crucial to explore the
ecological, industrial, and pharmaceutical applications of
scytonemin. Metabolic engineering techniques are expected to
play a pivotal role in attaining cost-effective biosynthesis of
scytonemin in the future.
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